Glial Cells Physiologically Modulate Clock Neurons and Circadian Behavior in a Calcium-Dependent Manner
نویسندگان
چکیده
BACKGROUND An important goal of contemporary neuroscience research is to define the neural circuits and synaptic interactions that mediate behavior. In both mammals and Drosophila, the neuronal circuitry controlling circadian behavior has been the subject of intensive investigation, but roles for glial cells in the networks controlling rhythmic behavior have only begun to be defined in recent studies. RESULTS Here, we show that conditional, glial-specific genetic manipulations affecting membrane (vesicle) trafficking, the membrane ionic gradient, or calcium signaling lead to circadian arrhythmicity in adult behaving Drosophila. Correlated and reversible effects on a clock neuron peptide transmitter (PDF) and behavior demonstrate the capacity for glia-to-neuron signaling in the circadian circuitry. These studies also reveal the importance of a single type of glial cell-the astrocyte-and glial internal calcium stores in the regulation of circadian rhythms. CONCLUSIONS This is the first demonstration in any system that adult glial cells can physiologically modulate circadian neuronal circuitry and behavior. A role for astrocytes and glial calcium signaling in the regulation of Drosophila circadian rhythms emphasizes the conservation of cellular and molecular mechanisms that regulate behavior in mammals and insects.
منابع مشابه
The ROP vesicle release factor is required in adult Drosophila glia for normal circadian behavior
We previously showed that endocytosis and/or vesicle recycling mechanisms are essential in adult Drosophila glial cells for the neuronal control of circadian locomotor activity. In this study, our goal was to identify specific glial vesicle trafficking, recycling, or release factors that are required for rhythmic behavior. From a glia-specific, RNAi-based genetic screen, we identified eight gli...
متن کاملGlia-related circadian plasticity in the visual system of Diptera
The circadian changes in morphology of the first visual neuropil or lamina of Diptera represent an example of the neuronal plasticity controlled by the circadian clock (circadian plasticity). It is observed in terminals of the compound eye photoreceptor cells, the peripheral oscillators expressing the clock genes. However, it has been found also in their postsynaptic partners, the L1 and L2 mon...
متن کاملNeuronal and Glial Clocks Underlying Structural Remodeling of Pacemaker Neurons in Drosophila
A number of years ago we reported that ventral Lateral Neurons (LNvs), which are essential in the control of rest-activity cycles in Drosophila, undergo circadian remodeling of their axonal projections. This structural plasticity gives rise to changes in the degree of connectivity, which could provide a means of transmitting time of day information. Thus far, work from different laboratories ha...
متن کاملCircadian Pacemaker Neurons Transmit and Modulate Visual Information to Control a Rapid Behavioral Response
Circadian pacemaker neurons contain a molecular clock that oscillates with a period of approximately 24 hr, controlling circadian rhythms of behavior. Pacemaker neurons respond to visual system inputs for clock resetting, but, unlike other neurons, have not been reported to transmit rapid signals to their targets. Here we show that pacemaker neurons are required to mediate a rapid behavior. The...
متن کاملCalcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation
Circadian rhythms of mammalian physiology and behavior are coordinated by the suprachiasmatic nucleus (SCN) in the hypothalamus. Within SCN neurons, various aspects of cell physiology exhibit circadian oscillations, including circadian clock gene expression, levels of intracellular Ca2+ ([Ca2+]i), and neuronal firing rate. [Ca2+]i oscillates in SCN neurons even in the absence of neuronal firing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 21 شماره
صفحات -
تاریخ انتشار 2011